References

Abrahams, S. C. \& Bernstein, J. L. (1969). Acta Cryst. B25, 1233-1236.
B. A. Frenz \& Associates, Inc. (1985). SDP Structure Determination Package. Version 4.0. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Kato, K., Kawada, I., Kimizuka, N. \& Katsura, T. (1975). Z. Kristallogr. 141, 314-320.
Kimizuka, N. \& Mohri, T. (1989). J. Solid State Chem. 78, 98-107.
Kimizuka, N., Mohri, T., Matsui, Y. \& Siratori, K. (1988). J. Solid State Chem. 74, 98-109.
Kimizuka, N. \& Takayama, E. (1981). J. Solid State Chem. 40, 109-116.
Lappe, F., Niggli, A., Nitsche, R. \& White, J. G. (1962). Z. Kristallogr. 117, 146-152.
Malaman, B., Evrard, O., Tannieres, N., Aubry, J., Courtois, A. \& Protas, J. (1975). Acta Cryst. B31, 1310-1312.

Acta Cryst. (1994). C50, 336-338
Structure of $\mathbf{K}_{\mathbf{2}} \mathbf{C o}_{\mathbf{2}}\left(\mathrm{SeO}_{\mathbf{3}}\right)_{\mathbf{3}}$
M. WILDNER

Institut für Mineralogie und Kristallographie, Universität Wien, Dr. Karl Lueger-Ring 1, A-1010 Wien, Austria
(Received 27 April 1993; accepted 9 August 1993)

Abstract

The structure of hexagonal dicobalt dipotassium triselenite, $\mathrm{K}_{2} \mathrm{Co}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$, is composed of CoO_{6} octahedra, KO_{9} polyhedra and two crystallographically different types of pyramidal SeO_{3} groups. Pairs of face-sharing CoO_{6} octahedra are linked via the SeO_{3} groups forming $\left[\mathrm{Co}_{2}\left(\mathrm{SeO}_{3}\right)_{3}\right]^{2-}$ layers parallel to (0001), which are connected by the K atoms. This new structure type is closely related to the buetschliite-type compounds $\mathrm{K}_{2} M\left(\mathrm{OO}_{3}\right)_{2}(M=\mathrm{Ca}$, Mg with $X=\mathrm{C}$, and $M=\mathrm{Co}$, Mn with $X=\mathrm{Se}$).

\section*{Comment}

Single crystals of $\mathrm{K}_{2} \mathrm{Co}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$ were obtained as a by-product in experiments aimed at the hydrothermal synthesis of the zemannite-type compound $\mathrm{K}_{2} \mathrm{Co}_{2}\left(\mathrm{SeO}_{3}\right)_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Wildner, 1993), starting with appropriate mixtures of $\mathrm{Co}(\mathrm{OH})_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{SeO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ in synthesis (i) (giving both compounds) or Co powder, $\mathrm{H}_{2} \mathrm{SeO}_{3}, \mathrm{KOH}$ and $\mathrm{H}_{2} \mathrm{O}$ in synthesis (ii) [giving only $\mathrm{K}_{2} \mathrm{Co}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$] in closed teflon-lined steel vessels at $\sim 493(5) \mathrm{K}(6 \mathrm{~d})$. X-ray intensity data were collected from a crystal obtained by synthesis

Fig. 1. Projection of the title structure along a direction slightly inclined to [$11 \frac{1}{2} 0$], showing the environment of the K atom. Only one of the two Se 2 positions related by the mirror plane parallel to (0001) is randomly occupied.
(ii) and the structure was solved by interpretation of a three-dimensional Patterson function and a subsequent Fourier synthesis. The atomic arrangement is illustrated in Fig. 1.

All cations occupy sites with $3 m$ symmetry. The CoO_{6} octahedra share faces via the O 2 atoms forming $\mathrm{Co}_{2} \mathrm{O}_{9}$ dimers. The repulsion between two neighbouring Co atoms $[\mathrm{Co} \cdots \mathrm{Co}=2.957$ (1) $\AA]$ results in an off-centring of the Co atoms along the threefold axis and in markedly different distances to O 1 and O 2 . The mean $\mathrm{Co}-\mathrm{O}$ distance ($2.123 \AA$) is in the usual range and correlates with the expectations from the observed bond-length distortion (Wildner, 1992a). The CoO_{6} octahedra share all their corners with SeO_{3} groups, thus forming $\left[\mathrm{Co}_{2}\left(\mathrm{SeO}_{3}\right)_{3}\right]^{2-}$ double-octahedral layers parallel to (0001). The Sel atoms are one-sided pyramidally coordinated to three Ol atoms with usual interatomic bond lengths and angles (Hawthorne, Groat \& Ercit, 1987; Fischer \& Zemann, 1974); the Se apices and their lone-pair electrons point towards the centre of the layers. The Se2 atoms have an occupancy factor of only 0.5 and are randomly distributed on one of two positions $\left[\mathrm{Se} 2 \cdots \mathrm{Se} 2^{\prime}=1.237(2) \AA\right]$ symmetrically related by the mirror planes parallel to (0001) which contain the O 2 atoms. The $\mathrm{Se} 2-\mathrm{O} 2$ distances are very short and the pyramids are extremely flattened compared to the average shapes of SeO_{3} groups reported in the literature $\left(\mathrm{Se}-\mathrm{O}=1.709 \AA, \mathrm{O}-\mathrm{Se}-\mathrm{O}=100.2^{\circ}\right.$; Hawthorne, Groat \& Ercit, 1987). This structural feature
might be caused by a dynamic transition of the Se 2 atom between the two related positions, thus yielding atomic coordinates which are shifted towards the mirror plane. Anisotropic displacement parameters of the Se 2 atom, however, indicate nearly spherical motion and are, therefore, in contradiction to this explanation. Another reason might be the repulsion between electrons of the K atoms and the lone-pair electrons of Se 2 , which are directed towards the K atoms along the threefold axis; the Se 2 and K atoms are separated by only 3.161 (2) \AA. An increase in this distance seems to be impeded by the opposing influence of a short K-Co contact of 3.529 (2) \AA. The K atoms are nine-coordinated with three shorter and six longer bonds to O 1 atoms and connect consecutive $\left[\mathrm{Co}_{2}\left(\mathrm{SeO}_{3}\right)_{3}\right]^{2-}$ layers. The mean $\mathrm{K}-\mathrm{O}$ distance ($2.906 \AA$) is in good agreement with crystal chemical expectations.

The structure of $\mathrm{K}_{2} \mathrm{Co}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$ is closely related to the structures of buetschliite, $\mathrm{K}_{2} \mathrm{Ca}\left(\mathrm{CO}_{3}\right)_{2}$ (Pabst, 1974; Knobloch, Pertlik \& Zemann, 1980; Effenberger \& Langhof, 1984), and the buetschliite-type compounds $\mathrm{K}_{2} \mathrm{Mg}\left(\mathrm{CO}_{3}\right)_{2}$ (Hesse \& Simons, 1982), $\mathrm{K}_{2} \mathrm{Co}\left(\mathrm{SeO}_{3}\right)_{2}$ (Wildner, $1992 b$) and $\mathrm{K}_{2} \mathrm{Mn}\left(\mathrm{SeO}_{3}\right)_{2}$ (Wildner, 1992c). In $\mathrm{K}_{2} \mathrm{Co}\left(\mathrm{SeO}_{3}\right)_{2}$, for example, $\left[\mathrm{Co}\left(\mathrm{SeO}_{3}\right)_{2}\right]^{2-}$ single-octahedral layers (containing unshared CoO_{6} octahedra with $\overline{3} m$ point symmetry) are connected by K atoms, analogously to $\mathrm{K}_{2} \mathrm{Co}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$. The absence of $\mathrm{Co}_{2} \mathrm{O}_{9}$ dimers and, therefore, of repulsion effects between neighbouring Co atoms leads to significantly increased cationcation distances along the threefold axis in $\mathrm{K}_{2} \mathrm{Co}$ $\left(\mathrm{SeO}_{3}\right)_{2}[\mathrm{Co} \cdots \mathrm{K}=3.594 \AA, \mathrm{~K} \cdots \mathrm{Se}(\equiv \mathrm{Se} 2)=3.240 \AA]$. Accordingly, the strong flattening found for the SeO_{3} pyramid in $\mathrm{K}_{2} \mathrm{Co}\left(\mathrm{SeO}_{3}\right)_{2}$ is still much weaker than that observed for the corresponding polyhedron of Se 2 in the title compound. Furthermore, shorter cation-cation contacts in $\mathrm{K}_{2} \mathrm{Co}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$ result in reduced distances between the O -atom levels of consecutive octahedral layers [$3.368 \AA$, as compared to $3.436 \AA$ in $\mathrm{K}_{2} \mathrm{Co}\left(\mathrm{SeO}_{3}\right)_{2}$] and in less pronounced differences between shorter and longer $\mathrm{K}-\mathrm{O}$ bonds [$0.117 \AA$ in the title compound, but $0.243 \AA$ in $\mathrm{K}_{2} \mathrm{Co}\left(\mathrm{SeO}_{3}\right)_{2}$].

> Experimental
> $C_{r y s t a l ~ d a t a ~}$
> $\mathrm{~K}_{2} \mathrm{Co}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$
> $M_{r}=576.94$
> Hexagonal
> $P_{3} / m m c$
> $a=5.486(1) \AA$
> $c=17.574(3) \AA$
> $V=458.1(3) \AA^{3}$
> $Z=2$
> $D_{x}=4.183 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection
Stoe AED-2 four-circle
diffractometer
$2 \theta-\omega$ scans
Absorption correction:
empirical
$T_{\text {min }}=0.05, T_{\text {max }}=0.11$
4366 measured reflections
434 independent reflections
394 observed reflections
$\left[F_{o}>3 \sigma\left(F_{o}\right)\right]$

Refinement

Refinement on F
$R=0.038$
$w R=0.034$
$S=4.12$
394 reflections
24 parameters
$w=1 / \sigma^{2}\left(F_{o}\right)$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.72 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.09 \mathrm{e}^{-3}$

```
\(R_{\text {int }}=0.063\)
\(\theta_{\text {max }}=35^{\circ}\)
\(h=-9 \rightarrow 9\)
\(k=0 \rightarrow 9\)
\(l=-28 \rightarrow 28\)
3 standard reflections
    frequency: 120 min
    intensity variation: \(\pm 0.6 \%\)
```

Extinction correction:
Zachariasen (1967)
Extinction coefficient: $6.8(3) \times 10^{-5}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$U_{\mathrm{cq}}=\frac{1}{3}\left[U_{33}+\frac{4}{3}\left(U_{11}+U_{22}-U_{12}\right)\right]^{*}$ *				
	x	y	z	$U_{\text {eq }}$
K	1/3	2/3	0.03494 (10)	0.0255 (5)
Co	1/3	2/3	0.66586 (5)	0.0145 (3)
Sel	0	0	0.13913 (3)	0.0129 (2)
Se2 \dagger	1/3	2/3	0.21480 (6)	0.0116 (3)
Ol	0.1599 (3)	-0.1599 (3)	0.5958 (2)	0.0180 (10)
O2	0.4969 (4)	-0.4969 (4)	1/4	0.0185 (14)
* Fischer \& Tillmanns (1988). \dagger Occupancy factor of 0.5 .				

Table 2. Selected geometric parameters ($\left(\mathrm{A}^{\circ},{ }^{\circ}\right)$

$\mathrm{K}-\mathrm{Ol}$	2.828 (2)	$3 \times$	O1-O1	2.631 (3)	$3 \times$
$\mathrm{K}-\mathrm{O} 1$	2.945 (1)	$6 \times$	$\mathrm{Ol}-\mathrm{Ol}$	2.855 (3)	$6 \times$
			$\mathrm{Ol}-\mathrm{Ol}$	3.695 (5)	$6 \times$
$\mathrm{Co}-\mathrm{Ol}$	2.057 (2)	$3 \times$	$\mathrm{Ol}-\mathrm{Ol}$	2.885 (3)	$3 \times$
$\mathrm{Co}-\mathrm{O} 2$	2.188 (1)	$3 \times$	O2-O2	2.794 (5)	$3 \times$
			$\mathrm{O} 1-\mathrm{O} 2$	3.162 (3)	$6 \times$
Sel-O1	1.699 (1)	$3 \times$	$\mathrm{O} 1-\mathrm{O} 2$	3.631 (3)	$3 \times$
$\mathrm{Se} 2-\mathrm{O} 2$	1.673 (2)	$3 \times$	$\mathrm{O} 2-\mathrm{O} 2$	2.692 (5)	$3 \times$
$\mathrm{Ol}-\mathrm{Co}-\mathrm{Ol}$	87.9 (1)	$3 \times$	$\mathrm{Ol}-\mathrm{Sel}-\mathrm{Ol}$	101.5 (1)	$3 \times$
$\mathrm{O} 2-\mathrm{Co}-\mathrm{O} 2$	79.3 (1)	$3 \times$	$\mathrm{O} 2-\mathrm{Se} 2-\mathrm{O} 2$	107.1 (2)	$3 \times$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 2$	90.3 (1)	$6 \times$			
$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 2$	174.2 (4)	$3 \times$			

The Se 2 atoms have an occupancy factor of 0.5 and are randomly distributed on position $4(f)$ of space group $P 6_{3} / \mathrm{mmc}$. Preliminary X -ray investigations included long-time-exposed rotation and Weissenberg photographs, which showed no indications of superlattice reflections. Programs used were STRUCSY (Stoe \& Cie, 1984) and ATOMS (Dowty, 1991).

The author thanks Professor E. Tillmanns and Dr H. Effenberger for helpful comments.

Lists of structure factors and anisotropic displacement parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71571 (4 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England. [CIF reference: SH1067]

References

Dowty, E. (1991). ATOMS. A Computer Program for Displaying Atomic Structures. Shape Software, Kingsport, USA.
Effenberger, H. \& Langhof, H. (1984). Acta Cryst. C40, 12991300.

Fischer, R. X. \& Tillmanns, E. (1988). Acta Cryst. C44, 775-776.
Fischer, R. \& Zemann, J. (1974). Handbook of Geochemistry, Vol. 113, edited by K. H. Wedepohl, p. 34A. Berlin, Heidelberg, New York: Springer Verlag.
Hawthorne, F. C., Groat, L. A. \& Ercit, T. S. (1987). Acta Cryst. C43, 2042-2044.
Hesse, K.-F. \& Simons, B. (1982). Z. Kristallogr. 161, 289-292.
Knobloch, D., Pertlik, F. \& Zemann, J. (1980). Neues Jahrb. Mineral. Monatsh. pp. 230-236.
Pabst, A. (1974). Am. Mineral. 59, 353-358.
Stoe \& Cie (1984). STRUCSY Structure System Program Package. Stoe \& Cie, Darmstadt, Germany.
Wildner, M. (1992a). Z. Kristallogr. 202, 51-70.
Wildner, M. (1992b). Acta Cryst. C48, 410-412.
Wildner, M. (1992c). Acta Cryst. C48, 595.
Wildner, M. (1993). Mineral. Petrol. 48, 215-225.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1994). C50, 338-340

Structure of CePdAl

B. Xue, H. Schwer and F. Hulliger
Laboratorium für Festkörperphysik, ETH Hönggerberg, CH-8093 Zürich, Switzerland

(Received 15 May 1993; accepted 16 July 1993)

Abstract

The cerium palladium aluminide, CePdAl , was found to crystallize with a hexagonal ZrNiAl -type structure, which is an ordered $\mathrm{Fe}_{2} \mathrm{P}$-type derivative.

Comment

The structure determination of CePdAl was carried out as part of an investigation of $\operatorname{Ln} T X$ compounds ($\mathrm{Ln}=$ rare-earth \quad element,$\quad T=$ transition-metal element, $X=\mathrm{B}$-group element). The structure of CePdAl was found to crystallize in the ZrNiAl -type
structure found, for example, in CeNiAl and HoNiAl (Dwight, Mueller, Conner, Downey \& Knott, 1968), CeNiGa (Yarmolyuk, Gryn \& Gladyshevskii, 1979), and ScRuSi and $\mathrm{Sc} T \mathrm{Ge}$ ($T=$ Ru, Rh, Pd or Os) (Hovestreydt, Engel, Klepp, Chabot \& Parthé, 1982).

The sample was synthesized by arc melting the constituent elements under purified Ar in a watercooled copper hearth. Traces of a second phase were detectable on the Guinier powder photograph taken with $\mathrm{Cu} K \alpha_{1}$ radiation. All crystals found in the crushed ingot were intergrown or twinned. The best crystal, which showed only slight twinning, was used for the data collection.

The structure consists of strongly distorted hexagonal close packing $(A B A B)$ of Ce and Al atoms with all the Ce atoms in the A layers, all the Al atoms in the B layers, and with one third of the Pd atoms inserted in the A layers and two thirds [Pd in 2(d)] inserted in the B layers. Thus, each Pd atom in a $1(a)$ site is located at the centre of a trigonal prism of Al atoms [at a distance of 2.685 (6) \AA] and has three Ce neighbours in the equatorial plane at 3.038 (2) \AA. Pd in $2(d)$, on the other hand, is at the centre of a similar polyhedron formed by six Ce atoms at 3.025 (1) \AA and three Al atoms at 2.859 (6) \AA. The nonequivalence of the $1(a)$ and $2(d)$ sites was discussed by Rundqvist \& Jellinek (1959), who predicted that ternary phases would exist with an ordered $\mathrm{Fe}_{2} \mathrm{P}$-type structure (their unit cell is shifted by $z=\frac{1}{2}$). The Al atom is surrounded by a tetragonal pyramid of five Pd atoms, while the Ce atom is surrounded by a tetrahedron of four Pd atoms. The structure of CePdAl is a further example which obeys the rule, demonstrated by Hovestreydt et al. (1982) in the

Fig. 1. The ZrNiAl -type structure of CePdAl projected onto the basal plane; the hexagonal unit cell is indicated by dashed lines, the trigonal prisms around the Pd atoms are shown in the main part and on the left-hand side the bonds are indicated for each kind of atom.

